
If you're bringing up a new Mastodon server, there will probably come a time when you want, or have
to block another server. I've heard there are some unsavoury ones out there. AD-blocking software
had had the concept of a blocklist of many years, but I haven't really found a good central repository
of blocked servers, and most importantly, the reasons they are blocked.

This set of PowerShell functions will let you pull the server block list from another Mastodon instance.
If we ever decide to put together a master block list, these can easily be adapted to use that list as a
source.

How to mirror the list of server
blocks from another Mastodon
instance

Get-MastodonServerBlock.ps1

You need to run the .ps file in PowerShell so that the functions get

loaded but after that you can just use them like regular commands.

#

e.g.

Get-MastodonServerBlock `

-domain source.social `

-accessToken "source_domain_token" |

Foreach-Object {

Add-MastodonServerBlock `

-domain target.social `

-accessToken "target_domain_token" `

-block $_

}

#

If you don't have admin access to another server, and that server is

publicly allowing their blocks to bee seen, you can leave off the

-accessToken parameter and get that version of the list. Some of the

domains may be obfuscated in this case, and the obfuscated domains

will be ignored by Add-MastodonServerBlock.

##

Creates an object used by Add-MastodonServerBlock from its constituent

parameters. Really just a helper method.

function New-MastodonServerBlock {

 param (

 [Parameter(Mandatory = $true)][string] $domain,

 [Parameter(Mandatory = $true)][string] $severity,

 [Parameter(Mandatory = $false)][string] $justification = "",

 [Parameter(Mandatory = $false)][string] $comment = "",

 [Parameter(Mandatory = $false)][switch] $rejectMedia = $false,

 [Parameter(Mandatory = $false)][switch] $rejectReports = $false,

 [Parameter(Mandatory = $false)][switch] $obfuscate = $false

)

 $block = @{

 domain = $domain

 severity = $severity

 public_comment = $justification

 private_comment = $comment

 reject_media = $rejectMedia

 reject_reports = $rejectReports

 obfuscate = $obfuscate

 }

 New-Object -TypeName PSObject -Property $block

}

Retrieves the list of server blocks from a server.

If the accessToken is specified, it will attempt to use the admin

API otherwise if will use the instance API where domains names may

be obfuscated.

function Get-MastodonServerBlock {

 param (

 [Parameter(Mandatory = $true)][string] $domain,

 [Parameter(Mandatory = $false)][string] $accessToken = $null

)

 if ($accesstoken -ne $null) {

 (Invoke-WebRequest `

 -Uri "https://$domain/api/v1/admin/domain_blocks" `

 -Method GET `

 -Headers @{ Authorization = "Bearer $accesstoken" }).Content | ConvertFrom-Json

 }

 else {

 (Invoke-WebRequest `

 -Uri "https://$domain/api/v1/instance/domain_blocks" `

 -Method GET).Content | ConvertFrom-Json

 }

}

Adds a server block to a server.

Requires an access token with appropriate access.

function Add-MastodonServerBlock {

 param (

 [Parameter(Mandatory = $true)][string] $domain,

 [Parameter(Mandatory = $true)][string] $accesstoken,

 [Parameter(Mandatory = $true, ValueFromPipeline = $true)] $block

)

 if ($block.domain.IndexOf("*") -ge 0) {

 Write-Warning "Ignoring obfuscated domain $($_.domain)"

 return

 }

 Invoke-WebRequest `

 -Uri "https://$domain/api/v1/admin/domain_blocks" `

 -Method POST `

 -Headers @{ Authorization = "Bearer $accesstoken" } `

 -Body $($_ | ConvertTo-Json) `

 -ContentType "application/json"

}

Revision #3
Created 28 November 2022 16:57:50 by Steve Dinn
Updated 1 May 2023 19:33:08 by Steve Dinn

