
This is based on this guide that I used to set my Mastodon server, but without the parts about building
from source, and with some parts I was able to smooth out in my experience.

Ensure you have a machine that is running a recent, stable version of docker and docker-compose. If
you're not there yet, there are a bunch of ways this can be accomplished, so I'll leave you to google
that.

Make a folder that will contain all the volumes that we're going to create. I called this mastodon , and
put it in the same folder as all the other folders for services that I run via docker. Change into this
directory so that all the subsequent commands will be in that scope. Get the default docker-

compose.yml file to start with and put it in your mastodon folder. I used this one from the guide linked at
the top.

In general, i think it's good to take the latest and greatest version of whatever software you're going
to use. Version 4.0.1 of Mastodon has just been released, so I changed the lines that read:

to read the following instead

How to run a #Mastodon
server using #Docker (and
docker-compose)

What you need to start

Choosing a Mastodon image

 build: .
 image: tootsuite/mastodon

 image: tootsuite/mastodon:v4.0

https://github.com/felx/mastodon-documentation/blob/master/Running-Mastodon/Docker-Guide.md
https://raw.githubusercontent.com/mastodon/mastodon/main/docker-compose.yml

Having a tag at the end of the image name will specifically reference a particular tagged instance of
that image. without a tag, you'll get tootsuite/mastodon:latest by default. I chose my particular tag
because I don't want the underlying image to change without me specifically changing it. the latest
tag will change whenever a new stable version is released, but since there are upgrade procedures
associated with each new version, I want upgrading to be a manual process that do purposefully.
However, not including the patch version means that we'll get whatever the latest patch of v4.0 is,
and those minor updates are typically safe and usually only contain bug fixes.

Get the sample environment variable file from the repository. Save it in your mastodon folder as
.env.production (i.e., remove .sample from the end of the filename). Don't worry about the particulars
yet...we'll get to that.

Make the following folders under your mastodon folder:

postgres14
redis
elasticsearch (only if you plan to use elastic search)
system
assets Each of these folders will be used to hold some persistent data that the containers will
produce and use. If you don't persist data in containers, then it disappears with the container.

I modified the docker-compose.yml file here to reference my folders so instead of

on the containers that use the tootsute\mastodon image, we'll have

Lastly, we need to set these folders to be owned by the user that is going to run the mastodon
services. The following command will do that:

This may ask you for your root password.

Docker Configuration

 volumes:
 - ./public/system:/mastodon/public/system

 volumes:
 - ./system:/mastodon/public/system
 - ./assets:/mastodon/public/assets

sudo chown -R 991:991 ./system ./assets

https://raw.githubusercontent.com/mastodon/mastodon/main/.env.production.sample

Finally we're ready to run something. The following command will start up the web container and its
dependencies in order to run mastodon's setup script. You should be able to answer with the default
for most things. I had to change the default database name from postgres to mastodon_production to
match what is in the docker-compose.yml file.

This command will output a file of environment variables that you'll want to merge with the ones in
the copied env.production sample file that should already be in your mastodon folder.

Run the entire stack of containers with the command

The -d puts the containers in the background to run as a daemon, but if you wish to run the stack
synchronously to see any errors that might occur, you can omit the -d .

With the docker-compose.yml file as it currently is, The website is exposed only on localhost, so you
won't be able to even access it over the network. This is intended for a reverse proxy to serve it up to
the public, I would highly recommend this because Mastodon doesn't do SSL by default. I'm not going
to explain how to do this here, because that deserves its own tutorial, but there are many of them
online. You can choose between one of several different bits of software that will all do the trick. In my
case, my reverse proxy is on a separate machine, so I needed to expose the mastodon port to the
local network. In order to do this, I changed the port configuration of web container from

to

because I wanted to expose mastodon to all network interfaces on the machine using the public port
8030, while keeping the docker container's port as 3000.

Mastodon configuration

docker-compose run --rm web rake: mastodon:setup

Run your mastodon server!

docker-compose up -d

 ports:
 - '127.0.0.1:3000:3000'

 ports:
 - 8030:3000

Running docker-compose up -d will refresh all containers with changed configuration.

There will come a time when you want to upgrade your mastodon server to a newer version. However,
don't get hasty. The first thing you'll always want to do is back up your mastodon folder. You can do
this easily by tarring and gzipping everything into an archive file. First, bring your mastodon server
down so we're not trying to zip up a database that is currently changing.

Then zip up the current mastodon folder and save it as a tar.gz file in the parent folder.

Next, edit the docker-compose.yml file to reflect the new tag for the version you're upgrading to. Finally
we'll need to run some commands to download the new image(s), upgrade the database, and pre-
compile the assets. I've learned that the assets are pre-compiled for you in the docker container
version and this step is only necessary when you compile from source.

Then a final docker-compose up -d and we should be running the upgraded version.

If I've missed anything, or made an grevious errors, please let me know. You can find me on mastodon
at @steve@social.dinn.ca

Upgrading mastodon

docker-compose down

tar -zcf ../mastodon.tar.gz .

docker-compose pull
docker-compose run --rm web rake db:migrate

Appendix 1: My docker-compose.yml
version: '3'

networks:
 external_network:
 internal_network:
 internal: true

services:
 db:
 restart: always
 hostname: db
 image: postgres:14-alpine
 shm_size: 256mb
 networks:
 - internal_network
 volumes:
 - ./postgres14:/var/lib/postgresql/data
 environment:
 POSTGRES_HOST_AUTH_METHOD: "trust"
 POSTGRES_DB: "mastodon_production"
 POSTGRES_USER: "mastodon"
 POSTGRES_PASSWORD: "[Initial Postgres password]"

 redis:
 restart: always
 hostname: redis
 image: redis:7-alpine
 networks:
 - internal_network
 healthcheck:
 test: ['CMD', 'redis-cli', 'ping']
 volumes:
 - ./redis:/data

 es:
 restart: always
 hostname: es
 image: docker.elastic.co/elasticsearch/elasticsearch:7.17.4
 environment:
 - "ES_JAVA_OPTS=-Xms512m -Xmx512m -Des.enforce.bootstrap.checks=true"
 - "xpack.license.self_generated.type=basic"
 - "xpack.security.enabled=false"
 - "xpack.watcher.enabled=false"
 - "xpack.graph.enabled=false"

 - "xpack.ml.enabled=false"
 - "bootstrap.memory_lock=true"
 - "cluster.name=es-mastodon"
 - "discovery.type=single-node"
 - "thread_pool.write.queue_size=1000"
 networks:
 - external_network
 - internal_network
 healthcheck:
 test: ["CMD-SHELL", "curl --silent --fail localhost:9200/_cluster/health || exit 1"]
 volumes:
 - ./elasticsearch:/usr/share/elasticsearch/data
 ulimits:
 memlock:
 soft: -1
 hard: -1
 nofile:
 soft: 65536
 hard: 65536
 ports:
 # Don't think this port needs to be exposed
 - '9200:9200'

 web:
 #build: .
 hostname: mastodon-web
 image: tootsuite/mastodon:v4.0
 restart: always
 env_file: .env.production
 command: bash -c "rm -f /mastodon/tmp/pids/server.pid; bundle exec rails s -p 3000"
 networks:
 - external_network
 - internal_network
 ports:
 - '8030:3000'
 depends_on:
 - db

 - redis
 - es
 volumes:
 - ./system:/mastodon/public/system
 - ./assets:/mastodon/public/assets
 environment:
 RAILS_ENV: "production"
 NODE_ENV: "production"

 streaming:
 #build: .
 hostname: mastodon-streaming
 image: tootsuite/mastodon:v4.0
 restart: "no"
 env_file: .env.production
 command: node ./streaming
 networks:
 - external_network
 - internal_network
 volumes:
 - ./system:/mastodon/public/system
 - ./assets:/mastodon/public/assets
 environment:
 RAILS_ENV: "production"
 NODE_ENV: "production"
 ports:
 # Don't think this port needs to be exposed.
 - '8031:4000'
 depends_on:
 - db
 - redis

 sidekiq:
 #build: .
 hostname: mastodon-sidekiq
 image: tootsuite/mastodon:v4.0
 restart: always

Link: Scaling Mastodon in the face of an exodus

 env_file: .env.production
 command: bundle exec sidekiq
 depends_on:
 - db
 - redis
 networks:
 - external_network
 - internal_network
 volumes:
 - ./system:/mastodon/public/system
 - ./assets:/mastodon/public/assets
 environment:
 RAILS_ENV: "production"
 NODE_ENV: "production"

Appendix 2: Scaling Mastodon

Revision #17
Created 13 November 2022 13:28:04 by Steve Dinn
Updated 4 May 2023 12:05:08 by Steve Dinn

https://nora.codes/post/scaling-mastodon-in-the-face-of-an-exodus/

